Epigenetic Telomere Protection by Drosophila DNA Damage Response Pathways A Dissertation Presented By
نویسندگان
چکیده
Several aspects of Drosophila telomere biology indicate that telomere protection can be regulated by an epigenetic mechanism. First, terminally deleted chromosomes can be stably inherited and do not induce damage responses such as apoptosis or cell cycle arrest. Second, the telomere protection proteins HP1 and HOAP localize normally to these chromosomes and protect them from fusions. Third, unprotected telomeres still contain HeT-A sequences at sites of fusions. Taken together these observations support a model in which an epigenetic mechanism mediated by DNA damage response proteins protects Drosophila telomeres from fusion. Work presented in this thesis demonstrates that the Drosophila proteins ATM and Nbs are required for the regulation of DNA damage responses similar to their yeast and mammalian counterparts. This work also establishes a role for the ATM and ATR DNA damage response pathways in the protection of both normal and terminally deleted chromosomes. Mutations that disrupt both pathways result in a severe telomere fusion phenotype, similar to HP1 and HOAP mutants. Consistent with this phenotype, HOAP localization at atm,atr double mutant telomeres is completely eliminated. Furthermore, telomeric sequences are still present, even at the sites of fusions. These results support a model in which an epigenetic mechanism mediated by DNA damage response proteins protects Drosophila telomeres from fusion.
منابع مشابه
Epigenetic Telomere Protection by Drosophila DNA Damage Response Pathways
Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection....
متن کاملDrosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect.
Terminal deletions of Drosophila chromosomes can be stably protected from end-to-end fusion despite the absence of all telomere-associated sequences. The sequence-independent protection of these telomeres suggests that recognition of chromosome ends might contribute to the epigenetic protection of telomeres. In mammals, Ataxia Telangiectasia Mutated (ATM) is activated by DNA damage and acts thr...
متن کاملThe Drosophila Nbs protein functions in multiple pathways for the maintenance of genome stability.
The Mre11/Rad50/Nbs (MRN) complex and the two protein kinases ATM and ATR play critical roles in the response to DNA damage and telomere maintenance in mammalian systems. It has been previously shown that mutations in the Drosophila mre11 and rad50 genes cause both telomere fusion and chromosome breakage. Here, we have analyzed the role of the Drosophila nbs gene in telomere protection and the ...
متن کاملRemoval of shelterin reveals the telomere end-protection problem.
The telomere end-protection problem is defined by the aggregate of DNA damage signaling and repair pathways that require repression at telomeres. To define the end-protection problem, we removed the whole shelterin complex from mouse telomeres through conditional deletion of TRF1 and TRF2 in nonhomologous end-joining (NHEJ) deficient cells. The data reveal two DNA damage response pathways not p...
متن کاملEpigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study
Sulfur mustard (SM, bis- (2-chloroethyl) sulphide) is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is ...
متن کامل